In an era of giants, sauropods dwarfed everything.
These dinoasurs, including the diplodocus, were the biggest to walk the Earth. T. rex would have nipped at the knees of the largest sauropod —Argentinosaurus huinculensis.
University of Manchester researchers have now made a digitalArgentinosaurus robot to work out how this 80-tonne monster would have moved its vast bulk.
The study is published in an issue of PLoS One on “sauropod gigantism”.
The immense size of sauropods — the long-necked, tree-trunk-legged storybook giants of the Jurassic period — presents a quandary for biologists because they push animal bones and muscles to their limit.
This is why researchers have set out to answer some of the big questions about these very big animals, including: How did their muscles and bones support and move their bodies? How did their digestive system process sufficient food? And how high could they have reached with their immensely long necks (much longer, proportionally, than a giraffe’s)?
“The biggest elephants weigh around six or seven tonnes,” said Dr Bill Sellers, of the University of Manchester, who led the digital robot study.
“So Argentinosaurus was at least 10 times bigger than the biggest elephant.
“As you get bigger your weight goes up by the cube of your height, but the force your muscles can generate only goes up by the square, so your strength-to-weight ratio gets much worse.”
As with many dinosaurs, the reconstructions of this giant are based on a relatively limited fossilised jigsaw. For Argentinosaurus, only its legs and part of its spine have been unearthed.
So controversy has raged over whether it was possible for an animal to be so huge and heavy and still able to walk on land.
“Whenever anyone finds a dinosaur, they want it to be the biggest, meanest dinosaur ever, so there might be a temptation to make a reconstruction a bit bigger than it was,” Dr Sellers told BBC News.
“We wanted to test whether it was a reasonable reconstruction for an animal.”